MATH PLACEMENT TEST FOR BUSINESS SAMPLE TEST #3

1. Perform the following operation and simplify:

$$-2x^{2}(x+1) + 5x(x^{2}-9) - x^{2}(x+4)$$

A.
$$2x^3 - 6x^2 - 45x$$

B.
$$6x^3 - 2x^2 - 45x$$

C.
$$2x^2 - 6x^4 - 45$$

- D. 0
- E. None of the above
- 2. Factor completely the following Expression:

$$2(3+2x)^2-5(x-4)(3+2x)$$

A.
$$2(3+2x)+5(x-4)$$

B.
$$7(3+2x)(x-4)$$

C.
$$(3+2x)(-x+26)$$

D.
$$(3+2x)(5x-20)$$

- E. None of the above
- 3. Factor completely the following Expression:

$$(x-6)^2-9$$

A.
$$(x-9)(x-3)$$

B.
$$(x - 15)(x + 3)$$

C.
$$(x-9)(x+3)$$

D.
$$(x-9)(3-x)$$

4. Perform the following operation assuming that x and y are positive real numbers. Write the answer using positive exponents only:

$$\left(\frac{y^{\frac{3}{2}}}{x^{\frac{1}{2}}y^3}\right)^{-3}$$

- A. $x^{\frac{1}{2}}y^{\frac{9}{2}}$
- B. $x^{\frac{3}{2}}y^{\frac{9}{2}}$
- C. $\frac{x^{\frac{3}{2}}}{y^{\frac{9}{2}}}$
- D. $x^{\frac{3}{2}}$
- E. None of the above
- 5. Perform the following operation and simplify:

$$\sqrt[3]{xy^5} \cdot \sqrt[3]{x^{16}y^8}$$

- A. $x^5y^4 \sqrt[3]{x^2y}$
- B. $x^4y^5 \sqrt[3]{x^2y}$
- C. $x^5y^5 \sqrt[3]{x^3y}$
- D. $x^5y^{11} \sqrt[3]{xy^2}$
- E. None of the above
- 6. Perform the following operation, simplify and determine the domain of the resultant expression:

$$\frac{x^2 - 24x + 144}{x^2 - 144} \div \frac{4x - 48}{x + 12}$$

A.
$$\frac{1}{x+12}$$
, $x \neq \pm 12$

B.
$$\frac{1}{4}, x \neq \pm 4$$

C.
$$4, x \neq \pm 12$$

D.
$$\frac{1}{4}$$
, $x \neq \pm 12$

7. Perform the following operation and simplify:

$$\frac{5x}{x+1} + \frac{6}{x-1} - \frac{10}{x^2-1}$$

- A. $\frac{x+1}{x-1}$
- B. $\frac{5x}{x-1}$
- C. $\frac{5x-4}{x+1}$
- $D. \ \frac{5x-4}{x-1}$
- E. None of the above
- 8. Simplify the following complex fraction:

$$\frac{49x^2 - 64y^2}{xy}$$
$$\frac{7}{y} - \frac{8}{x}$$

- A. 7x + 8y
- $B. \ \frac{7x + 8y}{xy}$
- $C. \ \frac{xy}{8x 7y}$
- D. 7x 8y
- E. None of the above
- 9. Rationalize the denominator of the following expression assuming that all variable are positive and the denominator is not 0:

$$\frac{4}{\sqrt{x+h} - \sqrt{x}}$$

- A. $\frac{4(\sqrt{x+h} \sqrt{x})}{\frac{h}{h}}$ B. $\frac{4(\sqrt{x+h} + \sqrt{x})}{h}$
- C. $\frac{4\sqrt{h}}{h}$
- D. $\frac{h}{4\sqrt{x+h} + \sqrt{x}}$
- E. None of the above

10. Solve the linear equation:

$$5[-5x - 7 - 6(x+1)] = 2x + 7$$

A.
$$x = -\frac{72}{57}$$

B.
$$x = -\frac{24}{19}$$

C.
$$x = -\frac{2}{57}$$

D.
$$x = -\frac{2}{5}$$

- E. None of the above
- 11. Solve for y the following equation:

$$8x - 6(x + y) = y - x$$

A.
$$y = 3x - 7$$

B.
$$y = 3x$$

C.
$$y = \frac{3}{7}x$$

D.
$$y = -\frac{3x}{7}$$

- E. None of the above
- 12. Solve the following equation:

$$\frac{x}{2x+2} = \frac{-2x}{4x+4} + \frac{2x-3}{x+1}$$

A.
$$x = -\frac{3}{2}$$

B.
$$x = 3$$

C.
$$x = -3$$

D.
$$x = \frac{2}{3}$$

13. Solve the following inequality, write your answer in Interval notation and graph it:

$$-14 < -3x + 4 \le -2$$

- E. None of the above
- 14. Solve the following inequality, write your answer in Interval notation:

$$\frac{4}{x+5} \ge \frac{1}{x-1}$$

$$A.[-1,5] \cup [3,\infty)$$

B.
$$(-5,1) \cup [3,\infty)$$

C.
$$[-5, 1]$$
 ∪ $[3, ∞)$

D.
$$(-5,1) \cup (3,\infty)$$

- E. None of the above
- 15. Solve the following System of Linear Equations:

$$\begin{cases} x + 3y = 0 \\ x - 3y = 24 \end{cases}$$

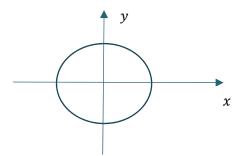
A.
$$x = 12, y = -4$$

B.
$$x = -12$$
, $y = 4$

C.
$$x = -12$$
, $y = -4$

D.
$$x = 12, y = 4$$

- E. None of the above
- 16. The total cost of producing x units from a certain product for which the fixed costs are \$2,400 and the cost per unit is \$10 is given by


A.
$$C = 2400 - 10x$$

B.
$$C = 2400 + 10x$$

C.
$$C = 10 + 2400x$$

D.
$$C = 10x + 2400x$$

17. Determine whether the following graph represents y as a function of x

A. Yes

- B. No
- 18. Find the domain of the following function:

$$f(x) = \frac{1}{x} - \frac{6x^2 - 7x + 12}{x^2 - 16}$$

- A. All real numbers x such that x = 0
- B. All real numbers x such that x = 0 and x = 4
- C. All real numbers x such that x = 4 and x = -4
- D. All real numbers x such that x = 0, x = 4 and x = -4
- E. None of the above
- 19. Find the domain of the following function:

$$f(x) = \ln(x - 6)$$

- A. All real numbers
- B. All real numbers x such that $x \neq 6$
- C. All real numbers x such that x > 6
- D. All real numbers x such that $x \ge 6$
- E. None of the above
- 20. Find f(x + h) f(x) if $f(x) = 4x^2 + x$

A.
$$8xh + 4h^2 + h + 2x$$

B.
$$8xh + 4h^2 + h$$

C.
$$8xh + 4h^2$$

D.
$$8xh + 2x$$

21. Find the y —intercept and x —interceprs (if any) for the following function:

$$f(x) = 2x^2 + 3x - 9$$

- A. y -inrecept at (0, -9) and x -intercpet at (-3, 0)
- B. y -inrecept at (0, -9) and x -intercpets at (-3, 0) and $\left(\frac{3}{2}, 0\right)$
- C. y -inrecept at (-9,0) and x -intercept at (0,-3) and $\left(0,\frac{3}{2}\right)$
- D. y -inrecept at (0, -9) and no x -intercepts
- E. None of the above
- 22. Find the vertex of the following quadratic function and state if this vertex is a maximum or a minimum:

$$f(x) = \frac{1}{4}x^2 + 2x - 5$$

- A. (-4, -9), Minimum
- B. (-4, -9), Maximum
- C. (4,-9), Minimum
- D. (8, 27), Minimum
- E. None of the above
- 23. The profit from the sale of a *x* units from a certain product is modeled by the function:

$$P(x) = -x^2 + 52x - 73$$

How many items should be sold to realize the maximum profit?

- A. 47 units
- B. 23 units
- C. 27 units
- D. 26 units
- E. None of the above
- 24. Write the equation of the line passing through the points (2,3) and (-3,6)
 - A. 3x 5y = 21
 - B. 6x + 5y = 21
 - C. 3x + 5y = 21
 - D. 3x + 5y = -21
 - E. None of the above

- 25. Write the equation of the line passing through the point (-8, 5) and parallel to the line given by the equation 3x - 4y - 5 = 0
 - A. y = 3x + 11

 - B. $y = \frac{3}{4}x + 11$ C. $y = -\frac{3}{4}x + 11$
 - D. $y = -\frac{3}{4}x 11$
 - E. None of the above
- 26. Write the following in Exponential form

$$log(x) = a$$

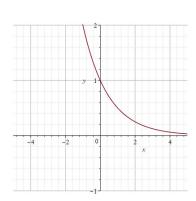
- A. $1^x = a$
- B. $1^a = x$
- C. $0^a = x$
- D. $10^a = x$
- E. None of the above
- 27. Given that x, y, z and b are positive numbers, write the following expression as a sum and/or difference of logarithms of x, y and z.

$$log_b\left(\sqrt[4]{\frac{x^3y^2}{z^4}}\right)$$

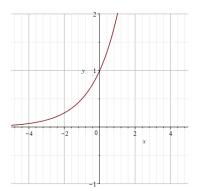
- A. $\frac{3}{4}log_b(x) + log_b(y) log_b(z)$ B. $\frac{3}{4}log_b(x) + \frac{1}{2}log_b(y) log_b(z)$ C. $log_b(x) + log_b(y) log_b(z)$
- D. $\frac{3}{4}log_b(x) \frac{1}{2}log_b(y) + log_b(z)$
- E. None of the above
- 28. Solve the following logarithmic equation

$$log_5(x) = 3$$

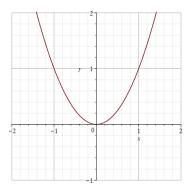
- A. 243
- B. 15
- C. 8
- D. 125
- E. None of the above

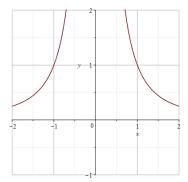

29. Solve the following Exponential Equation

$$16^x = 2$$


- A. $x = \frac{1}{4}$ B. x = 4

- C. -4D. $-\frac{1}{4}$
- E. None of the above
- 30. Identify the graph of the function $f(x) = 2^x$


A.


В.

C.

D.

PLACEMENT TEST FOR BUSINESS ANSWERS KEY SAMPLE TEST #3

Question #	Answer	Question #	Answer
1	A	16	В
2	С	17	В
3	A	18	D
4	В	19	C
5	A	20	В
6	D	21	В
7	D	22	A
8	A	23	D
9	В	24	C
10	A	25	В
11	С	26	D
12	В	27	В
13	С	28	D
14	В	29	A
15	A	30	В